MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.




ψψ     [ / ]   /[


][   ) [

,] / [    ]     .




ψ        / [ [ []

  ] ]   

 .




   / ]]   ) [[ ][


]
ψ

] ]  .



 ψ   / [ [ ] [

 ]   ] ] 
ψ

] /    .



ψ  /     / [ ]  [

  ) [[ ][

]ψ

] .   . 



ψ         [ [ ] [

   ] ] 
ψ

]   .



 ψ        [ [ ][

   ] 
ψ

]]   .




ψ       / [ 

[ ] [

  ]] ]    .






ψ   / [ [ ]]

  ]

ψ

] /     .




*  [ ]]


ψ[

   ] / ] ]] .








    [[ ]]/

] [
]ψ [
]] .





ψ [[ ]]

 ]

]ψ

]/ ]  .










  / [ [ ]]

]  ψ ]  .




ψ      [  [ ] [

][   ψ ] / ]    .






ψ     [

   ]] /      [[ ]]

     .






ψ  [[[ ]]  ) [

ψ [
  ]] ]










ψ     [ [[ ]]

  )[

  ,] /  ψ     .





   [[ ]] /   )[

, ] / ψ   .




A propriedade central da mecânica estatística é a utilização de métodos estatísticos para a formulação de uma teoria cinética para átomos e moléculas, com o intuito de explicar as propriedades deles em um nível macroscópico da natureza.[8]

Um teorema chave é o valor médio da energia cinética das moléculas de um gás a uma certa temperatura  que é calculado como

 (graus de liberdade).

distribuição de Boltzmann é um resultado muito conhecido na física, que relaciona a Termodinâmica com a Mecânica Estatística.[8] Por exemplo: a distribuição de moléculas na atmosfera - desconsiderando ventos e que se encontra em equilíbrio térmico a uma temperatura 

Supondo que  é o número de moléculas total em um volume  de um gás à pressão  então tem-se que:

 ou  sendo  o número de moléculas por unidade de volume. A temperatura sendo uma constante, a sua pressão será proporcional à sua densidade.

A pressão sobre uma camada  deve ser tal a balancear o peso.

A variação de densidade em função da altitude se dá ao tomar-se uma unidade de área com altura  sua força vertical será a força sobre a área sendo representado por  (pressão).

Em um sistema em equilíbrio, suas forças nas moléculas deverão ser balanceadas ou nulas sendo  a pressão feita na área inferior da camada que deve superar a pressão sobre a área de cima da camada assim balanceando com o peso.

Sendo  a força da gravidade em cada molécula,  é o número total das moléculas em cada área.[8] Com todas essas informações obtém-se a equação diferencial que representa o equilíbrio

Assim, sendo  e também  constantes , elimina-se  e resta a equação para 

Tem-se a variação da densidade em função da altura na atmosfera do exemplo:

 sendo  a densidade em relação à 

Densidade de átomos n em função da altura h

O numerador do expoente da equação anterior representa a energia potencial para cada átomo, sendo sua densidade em cada ponto igual a

Sendo que  é a energia potencial de cada átomo.

Supondo que haja diversas forças em atuação nos átomos, sendo elas carregadas e estejam sob forte influência de um campo elétrico ou haja atração entre elas.

Havendo um tipo apenas de molécula, a força em uma porção de gás será a força sobre uma molécula  o número de moléculas nessa mesma porção, sendo que a força age na direção  Semelhante em sua forma do problema da atmosfera, tomando dois planos paralelos no gás apenas separados por uma distância representada por  então a força sobre cada átomo multiplicada pela densidade  e por  deve ser balanceada pela diferença de pressão, ou seja,

sendo  o trabalho feito sobre uma molécula ao transportá-la de  até  seu trabalho é igual à diferença de energia potencial (ao quadrado)  assim,

Obtém-se da equação de força anterior:

Resultando em

Sendo  a variação de energia do estado final e inicial.

Esta última expressão é tratada como sendo a Lei de Boltzmann e pode ser interpretada da seguinte forma:

A probabilidade de encontrar moléculas em uma dada configuração espacial é tanto menor quanto maior for a energia dessa configuração a uma dada temperatura.

Tal probabilidade diminui exponencialmente com a energia dividida por 


Comentários

Postagens mais visitadas deste blog